

Solving Linear Equations

$$x + 4 = 7$$
 \Rightarrow Equation

 $x \Rightarrow unknown (variable)$ $values of x \Rightarrow solutions (roots)$ $finding the solution \Rightarrow solving the equation$

Properties of equality

•
$$A = B \Leftrightarrow A + C = B + C$$

•
$$A = B \Leftrightarrow CA = CB (C \neq 0)$$

Solving Linear Equations

A linear equation in one variable is

$$ax + b = 0$$

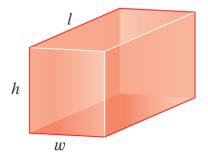
where \boldsymbol{a} and \boldsymbol{b} are real numbers and \boldsymbol{x} is the variable.

Linear equations

$$4x - 5 = 3$$
$$2x = \frac{1}{2}x - 7$$
$$x - 6 = \frac{x}{3}$$

$$x^2 + 2x = 8$$

$$\sqrt{x} - 6x = 0$$


$$\frac{3}{x} - 2x = 1$$

$$7x - 4 = 3x + 8$$

Solving for One Variable in Terms of Others

Example 2: The surface area A of the closed rectangular box can be calculated from the length l, the width w, and the height h according to the formula

$$A = 2lw + 2wh + 2lh$$

Solve for \boldsymbol{w} in terms of the other variables in this equation.

Example 3: Determine whether the given value is a solution of the equation.

•
$$4x + 7 = 9x - 3$$

(a) $x = -2$

(b)
$$x = 2$$

$$\bullet \quad \frac{1}{x} - \frac{1}{x - 4} = 1$$

(a)
$$x = 2$$
,

(b)
$$x = 4$$

1.1 Linear Equations

Example 4: The given equation is either linear or equivalent to a linear equation. Solve the equation.

•
$$2x + 3 = 7 - 3x$$

•
$$2(1-x) = 3(1+2x) + 5$$

$$\bullet \quad \frac{4}{x-1} + \frac{2}{x+1} = \frac{35}{x^2 - 1}$$

$$(t-4)^2 = (t+4)^2 + 32$$

Example 5: Solve the equation for the indicated variable.

•
$$PV = nRT$$
; for R

•
$$\frac{a+1}{b} = \frac{a-1}{b} + \frac{b+1}{a}$$
; for a

•
$$\frac{ax+b}{cx+d} = 2$$
; for x