

Solving Quadratic Equations

Quadratic Equations

A quadratic equation is

$$ax^2 + bx + c = 0$$

where a, b, and c are real numbers with $a \neq 0$.

Zero - Product Property

$$(A)(B) = 0$$
 if and only if $A = 0$ or $B = 0$

Solving a Quadratic Equation by Factoring

Example 1: Find all real solutions of the equation $x^2 + 5x = 24$.

Solving a simple quadratic Equation

The solutions of $x^2 = c \implies x = \sqrt{c}$ and $x = -\sqrt{c}$.

Example 2: Find all real solutions of each equation.

(a)
$$x^2 = 5$$

(b)
$$(x-4)^2 = 5$$

1.2 Quadratic Equations

Completing the Square

To make $x^2 + bx$ a perfect square, add $\left(\frac{b}{2}\right)^2$, (the square of half the coefficient of x). This gives the perfect square

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Example 3: Find all real solutions of each equation.

(a)
$$x^2 - 8x + 13 = 0$$

(b)
$$3x^2 - 12x + 6 = 0$$

The quadratic formula

The roots of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 4: Find all real solutions of the equation.

$$4x^2 + 12x + 9 = 0$$

1.2 Quadratic Equations

The Discriminant

The **discriminant** of the general quadratic equation $ax^2 + bx + c = 0 (a \neq 0)$ is $D = b^2 - 4ac.$

- If D > 0, then the equation has two distinct real solutions.
- If D = 0, then the equation has exactly one real solution.
- If D < 0, then the equation has no real solution.

Example 5: Use the discriminant to determine how many real solutions each equation has.

(a)
$$x^2 + 4x - 1 = 0$$

(a)
$$x^2 + 4x - 1 = 0$$
 (b) $4x^2 - 12x + 9 = 0$ (c) $\frac{1}{3}x^2 - 2x + 4 = 0$

$$(c)^{\frac{1}{2}}x^2 - 2x + 4 = 0$$

Example 6: Find all real solutions of the equation by factoring

•
$$x^2 + x - 12 = 0$$

•
$$2y^2 + 7y + 3 = 0$$

•
$$(2x-5)^2 = 81$$

1.2 Quadratic Equations

Example 7: Find all real solutions of the equation by completing the square.

• $x^2 + 2x - 5 = 0$

• $3x^2 - 6x - 1 = 0$

Example 8: Find all real solutions of the quadratic equation using quadratic formula.

• $x^2 - 2x - 15 = 0$

• $9x^2 + 12x + 4 = 0$

Example 9: Use the discriminant to determine the number of real solutions of the equation. Do not solve the equation.

•
$$x^2 - 6x + 1 = 0$$

$$4x^2 + 5x + \frac{13}{8} = 0$$