

The Real Line

Intervals

$$(a,b) = \{x \mid a < x < b\}$$
 $[a,b] = \{x \mid a \le x \le b\}$

Notation	Set description	Graph
(a,b)	$\{x \mid a < x < b\}$	
[a,b]	$\{x \mid a \le x \le b\}$	$a \qquad b$
[a,b)	$\{x \mid a \le x < b\}$	$a \qquad b \qquad \longrightarrow$
[a,b]	$\{x \mid a < x \le b\}$	$a \qquad b$
(a, ∞)	$\{x \mid a < x\}$	<i>a b</i> →
$[a,\infty)$	$ \left\{ x \mid a \le x \right\} $	<i>a</i>
$(-\infty,b)$		<i>a</i>
$\left[-\infty, b \right]$	$ \left \{x \mid x \le b\} \right $	<i>b</i>
$(-\infty,\infty)$	\mathbb{R} (set of all real numbers)	<i>b</i>

Finding Unions and Intersections of Intervals

Example: Graph each set

$$(1,3) \cap [2,7]$$

Exercises

Find the indicated set if

$$A = \{x \mid x \ge -2\}$$
 $B = \{x \mid x < 4\}$ $C = \{x \mid -1 < x \le 5\}$

• *B* ∪ *C*

• $A \cap B$

Express the inequality in interval notation, and then graph the corresponding interval.

- *x* ≤ 1
- $1 \le x \le 2$

• $-2 < x \le 1$

• x > -1

Express the interval in terms of inequalities, and then graph the interval.

- (-3,0)
- (2,8]

Express each set in interval notation.

Graph the set.

•
$$(-2,0) \cup (-1,1)$$

•
$$(-\infty, -4) \cup (4, \infty)$$

Absolute Value and Distance

If *a* is a real number, then the absolute value of *a* is

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

Absolute value properties

- $|a| \ge 0$
- |a| = |-a|
- |ab| = |a||b|
- $\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$
- $|a+b| \leq |a|+|b|$

Distance between Points on the Real Line

If *a* and *b* are real numbers, then the **distance** between the points *a* and *b* on the real line is

$$d(a,b) = |b - a|$$

Example 1

The distance between the numbers - 8 and 2 is

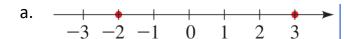
Example 2:. Express the quantity without using absolute value

- |a-b|, where a < b
- a + b + |a b|, where a < b

Example 3: Evaluate each expression

• |100|

• $|10 - \pi|$


• |−73|

• ||-6|-|-4||

• $|\sqrt{5} - 5|$

• $\frac{7-12}{12-7}$

Example 4: Find the distance between the given numbers

d. - 3 and 21

- e. $\frac{11}{8}$ and $-\frac{3}{10}$

c. 2 and 17

Exponential Notation

If \boldsymbol{a} is any real number and \boldsymbol{n} is a positive integer, then the \boldsymbol{n} th power of \boldsymbol{a} is

$$a^n = a.a...a$$
n factors

The number a is called the base, and n is called the exponent.

Zero and Negative Exponents

If $\alpha \neq 0$ is a real number and n is a positive integer, then

$$a^0 = 1$$
,

$$a^{-n} = \frac{1}{a^n}$$

Law of Exponent

•
$$a^m a^n = a^{m+n}$$

•
$$\frac{a^m}{a^n} = a^{m-n}$$

•
$$(a^m)^n = a^{mn}$$

•
$$(ab)^n = a^n b^n$$

•
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

•
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

$$\bullet \ \frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$$

Example 1:

Eliminate negative exponents and simplify each expression.

(a)
$$\frac{6st^{-4}}{2s^{-2}t^2}$$

(b)
$$\left(\frac{y}{3z^3}\right)^{-2}$$

•
$$a^m a^n = a^{m+n}$$

•
$$\frac{a^m}{a^n} = a^{m-n}$$

•
$$(a^m)^n = a^{mn}$$

•
$$(ab)^n = a^n b^n$$

$$\bullet \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

•
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

Example 2: We can write the product 5 . 5 . 5 . 5 . 5 . 5 as using exponential notation.

Example 3: Evaluate each expression.

•
$$-2^6$$

•
$$(-2)^6$$

$$\bullet \quad \left(\frac{1}{5}\right)^2 \cdot (-3)^3$$

Example 4: Evaluate each expression.

$$\cdot \left(\frac{5}{3}\right)^0 \cdot 2^{-1}$$

•
$$-2^{-3} \cdot (-2)^0$$

•
$$(2^2)^3$$

$$\bullet \left(\frac{-2}{3}\right)^{-3}$$

•
$$\frac{10^7}{10^4}$$

•
$$5^3 \cdot 5$$

Example 5: Simplify each expression.

•
$$x^2x^3$$

$$\bullet \quad \frac{y^{10}y^0}{v^7}$$

•
$$(-x^2)^3$$

•
$$(2x)^2(5x^6)$$

•
$$t^{-3}t^{5}$$

•
$$(2a^3a^2)^4$$

•
$$w^{-2}w^{-4}w^{5}$$

Simplify each expression and eliminate any negative exponent(s).

•
$$(2a^2b^{-1})(3a^{-2}b^2)$$

•
$$(9y^{-2}z^2)(3y^3z)$$

•
$$(8x^7y^2)(\frac{1}{2}x^3y)^{-2}$$

$$\bullet \quad \frac{x^2y^{-1}}{x^{-5}}$$

$$\bullet \quad \frac{3x^{-2}y^5}{9x^{-3}y^2}$$

$$\bullet \quad \left(\frac{y^{-1}}{x^{-2}}\right)^{-1} \left(\frac{3x^{-3}}{y^2}\right)^{-2}$$

$$\bullet \quad \frac{\frac{1}{2}a^{-3}b^{-4}}{2a^{-5}b^{-1}}$$

$$\bullet \left(\frac{q^{-1}r^{-1}s^{-2}}{r^{-5}sq^{-8}} \right)^{-1}$$

$$\bullet \ \left(\frac{xy^{-2}z^{-3}}{x^2y^3z^{-4}}\right)^{-3}$$

Scientific Notation

A positive number x is said to be written in *scientific notation* if it is expressed as follows:

$$x = a \times 10^n$$
 where $1 \le a < 10$ and **n** is an integer

$$3 \times 10^9 = 3000,000,000$$

$$1.2 \times 10^{-8} = 0.000000012$$

Example1:

Write each number in scientific notation.

(a) 56920

(b) 0.000093

Example 2:

Write each number in scientific notation.

- 69,300,000
- 7,200,000,000,000
- 0.000028536
- 0.0001213

Example 3:

Write each number in decimal notation.

- 3.19×10^5
- 2.670×10^{-8}
- 7.1×10^{14}
- 8.55×10^{-3}