Radicals

Definition of nth Root

If n is any positive integer, then the principal nth root of a is defined as

$$\sqrt[n]{a} = b$$
 means $b^n = a$

If n is even, $a \ge 0$ and $b \ge 0$

Properties of n^{th} Roots

- $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$
- $\bullet \quad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
- $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$
- $\sqrt[n]{a^n} = a$ if n is odd
- $\sqrt[n]{a^n} = |a|$ if n is even

Example 1: Simplify the following Radicals

- √32
- $\sqrt[3]{-16x^4}$

- $-8\sqrt{12} + \sqrt{3}$
- $\sqrt[3]{8x^4} + \sqrt[3]{-x} + 4\sqrt[3]{27x}$

Example 2: Evaluate each expression

√16

√7√28

• ⁴√16

• $\sqrt[3]{2}\sqrt[3]{32}$

³√-64

• $\sqrt[6]{\frac{1}{2}} \sqrt[6]{128}$

• $\sqrt{\frac{27}{4}}$

Example 3: Simplify each expression. Assume that all variables are positive when they appear

³√27

• $\sqrt[3]{-8x^4}$

³√-8

 $\sqrt[4]{x^{12}y^8}$

• $\sqrt{700}$

• $\sqrt[3]{\sqrt{64x^6}}$

Example 4: Simplify each expression. Assume that all variables are positive when they appear

$$\begin{array}{ccc}
& & & & 3 \\
& \sqrt{\frac{3xy^2}{81x^4y^2}}
\end{array}$$

•
$$(5\sqrt{8})(-3\sqrt{3})$$

•
$$\sqrt{15x^2}\sqrt{5x}$$

•
$$6\sqrt{5} - 4\sqrt{5}$$

•
$$(\sqrt[3]{3}\sqrt{10})^4$$

Example 5: Simplify the expression. Assume that all letters denote positive numbers

•
$$\sqrt{32} + \sqrt{18}$$

•
$$\sqrt[3]{2y^4} - \sqrt[3]{2y}$$

•
$$\sqrt[3]{54} - \sqrt[3]{16}$$

•
$$\sqrt{81x^2 + 81}$$

•
$$\sqrt{9a^3} - \sqrt{a}$$

Rationalizing the Denominator; Standard Form

$$\frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} \cdot 1 = \frac{1}{\sqrt{a}} \cdot \frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}{a}$$

$$\sqrt[n]{a^m}\sqrt[n]{a^{n-m}} = \sqrt[n]{a^{m+n-m}} = \sqrt[n]{a^n} = a$$

Note: standard form = denominator with no radicals

If a Denominator Contains the Factor	Multiply by	To Obtain a Denominator Free of Radicals
$\sqrt{3}$	$\sqrt{3}$	$(\sqrt{3})^2 = 3$
$\sqrt{3} + 1$	$\sqrt{3}-1$	$(\sqrt{3})^2 - 1^2 = 3 - 1 = 2$
$\sqrt{2}-3$	$\sqrt{2} + 3$	$(\sqrt{2})^2 - 3^2 = 2 - 9 = -7$
$\sqrt{5}-\sqrt{3}$	$\sqrt{5} + \sqrt{3}$	$(\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2$
$\sqrt[3]{4}$	$\sqrt[3]{2}$	$\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$

Example 1:

Put each fractional expression into standard form by rationalizing the denominator.

$$(a) \frac{2}{\sqrt{3}}$$

$$(c) \sqrt[7]{\frac{1}{a^2}}$$

(b)
$$\frac{1}{\sqrt[3]{5}}$$

Example 2: Rationalize the denominator of each expression. Assume that all variables are positive when they appear.

•
$$\frac{1}{\sqrt{2}}$$

$$\bullet \quad \frac{\sqrt{3}}{5 - \sqrt{2}}$$

$$\bullet \quad \frac{-\sqrt{3}}{\sqrt{5}}$$

$$\begin{array}{cc}
 & \frac{2-\sqrt{5}}{2+3\sqrt{5}}
\end{array}$$

$$\bullet \quad \frac{9}{\sqrt[4]{2}}$$

•
$$\sqrt{\frac{x}{5}}$$

$$\frac{\sqrt{x+h} - \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$\bullet \quad \frac{1}{\sqrt[4]{\chi^3}}$$

Rational Exponent

Definition of Rational Exponent

If m and n are integers and n > 0, then

$$a^{m/n} = (\sqrt[n]{a})^m$$

$$a^{m/n} = \sqrt[n]{a^m}$$

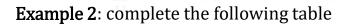
If *n* is even, then we require that $a \ge 0$.

Example 1:

Use the Laws of Exponents with Rational Exponents to simplify the following:

•
$$a^{1/3}a^{7/3}$$

$$\frac{a^{2/5}a^{7/5}}{a^{3/5}}$$



Radical expression

Exponential expression

$\frac{1}{\sqrt{3}}$	
$\sqrt[3]{7^2}$	
	$4^{2/3}$
	$10^{-3/2}$
⁵ √5 ³	
	2-1.5
	$a^{2/5}$

Example 3: Simplify the expression and eliminate any negative exponent(s). Assume that all letters denote positive numbers.

•
$$x^{3/4}x^{5/4}$$

•
$$(u^4v^6)^{-1/3}$$

•
$$\frac{\left(2y^{4/3}\right)^2 y^{-2/3}}{y^{7/3}}$$

$$\bullet \left(\frac{x^{-2/3}}{y^{1/2}} \right) \left(\frac{x^{-2}}{y^{-3}} \right)^{1/6}$$

•
$$(8a^6b^{3/2})^{2/3}$$

$$\bullet \quad \left(\frac{x^8y^{-4}}{16y^{4/3}}\right)^{-1/4}$$