

$$v_{avg} = \frac{\Delta s}{\Delta t} \quad v = \frac{ds}{dt}$$

$$v_{avg} = \frac{\Delta s}{\Delta t}$$

$$\text{Average Speed} = \frac{s_T}{\Delta t}$$

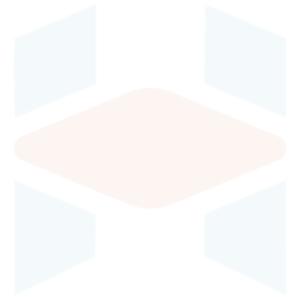
$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$ads = v \, dv$


The acceleration of a particle as it moves along a straight line is given by $a = (2t - 1) \text{ m/s}^2$, where t is in seconds, If $s = 1 \text{ m}$ and $v = 2 \text{ m/s}$ when $t = 0$, determine the particle's velocity and position when $t = 6 \text{ s}$. Also, determine the total distance the particle travels during this time period.

هندستی
بالعربی


A particle travels along a straight line with a velocity $v = (12 - 3t^2)$ m/s, where t is in seconds. When $t = 1$ s, the particle is located 10 m to the left of the origin. Determine the acceleration when $t = 4$ s, the displacement from $t = 0$ s to $t = 10$ s, and the distance the particle travels during this time period.

هندستی
بالعربی


When a train is traveling along a straight track at 2 m/s, it begins to accelerate at $(60v^4)$ m/s² where v is in m/s. Determine its velocity v and the position 3 s after the acceleration.

هندستی
بالعربی

A particle is moving along a straight line such that its velocity is defined as $v = (-4s^2)$ m/s, where s is in meters. If $s = 2$ m when $t = 0$, determine the velocity and acceleration as functions of time.

هندستی
بالعربی

